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ABSTRACT
Multimedia online platforms (e.g., Amazon, TikTok) have greatly
benefited from the incorporation of multimedia (e.g., visual, tex-
tual, and acoustic) content into their personal recommender sys-
tems. These modalities provide intuitive semantics that facilitate
modality-aware user preference modeling. However, two key chal-
lenges in multi-modal recommenders remain unresolved: i) The
introduction of multi-modal encoders with a large number of addi-
tional parameters causes overfitting, given high-dimensional multi-
modal features provided by extractors (e.g., ViT, BERT). ii) Side
information inevitably introduces inaccuracies and redundancies,
which skew the modality-interaction dependency from reflecting
true user preference. To tackle these problems, we propose to sim-
plify and empower recommenders throughMulti-modal Knowledge
Distillation (PromptMM) with the prompt-tuning that enables adap-
tive quality distillation. Specifically, PromptMM conducts model
compression through distilling u-i edge relationship and multi-
modal node content from cumbersome teachers to relieve students
from the additional feature reduction parameters. To bridge the
semantic gap between multi-modal context and collaborative sig-
nals for empowering the overfitting teacher, soft prompt-tuning
is introduced to perform student task-adaptive. Additionally, to
adjust the impact of inaccuracies in multimedia data, a disentan-
gled multi-modal list-wise distillation is developed with modality-
aware re-weighting mechanism. Experiments on real-world data
demonstrate PromptMM’s superiority over existing techniques.
Ablation tests confirm the effectiveness of key components. Ad-
ditional tests show the efficiency and effectiveness. To facilitate
the result reproducibility, our implementation is released via link:
https://github.com/HKUDS/PromptMM.
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1 INTRODUCTION
Multimedia platforms have grown in importance as tools for shar-
ing and shopping online. Utilizing modalities (e.g., soundtracks
of videos, pictures of products) to identify customized user prefer-
ences for ranking is the target of multi-modal recommenders [6, 34].
Early works started with introducing visual content[9, 14] and
later works employed attention mechanism [30, 63]. GNNs [4] (e.g.,
MMGCN[59]) then became mainstream due to significant improve-
ment by modeling high-order[51] relations. Some multi-modal
works focus on alleviating sparsity by constructing homogeneous
graphs(e.g., u-u[49], i-i[56, 65]) or introducing self-supervised [53]
tasks through joint training(e.g., MMSSL [54], MICRO [66]).

Despite the progress made in previous works, some key issues
still remain explored for multimedia recommendation scenarios:
• I1: Overfitting & Sparsity. Current multimedia recommenders
excel by employing advanced encoders to handle high-dimensional
features from pre-trained extractors (CLIP-ViT[35], BERT[5]). The
auxiliary modalities alleviate data sparsity, but inevitably lead
to increased consumption [50]. For example, regarding feature
extractors of Electronics (Sec. 4.1.1) dataset, the output dimen-
sion of SBERT[36] and CNNs[19] are 768 and 4,096, respectively.
They are much larger than embedding dimensions of current
methods[54, 55], i.e., 𝑑𝑚 ≫ 𝑑 . Retraining pre-trained models can
change output dimensions, but will significantly impact perfor-
mance due to different latent representations and hyperparam-
eters. Besides, training pre-trained models demands significant
computational resources and can take days to weeks on multiple
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GPUs. Therefore, current multi-modal works[6, 54] carry addi-
tional high-dimensional feature reduction layers. These additional
parameters aggravated overfitting that already exists due to data
sparsity, further increasing the difficulty of convergence [52].

• I2: Noise & Semantic Gap. As side information, multimedia
content has inherent inaccuracies and redundancies when mod-
eling user preference with collaborative relations. For example,
a user may be attracted by a textual title, but the image content
is unrelated; and the music in micro-videos might be for trends,
not user preferences. Blindly relying on noisy modality data may
mislead the u-i relation modeling. Besides, the multi-modal con-
text and u-i collaborative relations are originally derived from
two different distributions with a large semantic gap [54], which
poses challenges in mining modality-aware user preference and
even disrupts the existing sparse supervisory signals.

To cope with the above issues, we propose the following solutions:
I1: Developing a multi-modal KD (PromptMM) recommendation
framework to free the inference recommender from the additional
feature reduction parameters, by using KD for model compression.
This paradigm prevents overfitting while maintaining accuracy,
which also boosts the critical online inference phase with fewer
resources. Specifically, PromptMM conducts model compression
through distilling edge relationship (ranking KD, denoisedmodality-
aware ranking KD), and node content (modality-aware embedding
KD). The three types of KD respectively convey i) Pure knowl-
edge through a modified KL divergence[23] based on BPR loss[39];
ii) Fine-grained modality-aware list-wise ranking knowledge; iii)
Modality-aware embedding KD through SCE loss [17], an enhanced
version of MSE. I2: Developing two modules to tackle issues ’Noise
& Semantic Gap’ based on the KD framework: i) Semantic bridging
soft prompt-tuning is meant to reduce the impact of redundancy by
prompting teacher to deliver student-task adaptive knowledge. In
other words, prompt-tuning module can bridge the semantic gap
in two aspects: multi-modal content & collaborative signals, and
student & frozen teacher. Technically, the module is incorporated
into the teacher’s reduction layer and constructs prompts based
on multi-modal features. For optimization, the soft prompts train
with both teacher and student, to adaptively guide students during
the distillation when teacher is frozen. ii) Modality-aware disen-
tangled denoising list-wise ranking KD is to adjust the influence
of inaccuracies in modality-aware user preference. The decoupled
KD process first separates the results of list-wise ranking based on
modality-specific presentation. A re-weighting mechanism is then
applied to adjust the influence of unreliable portions.

To summarize, the main contributions of this work are as follows:

• In this work, we propose a novel multi-modal KD framework
PromptMM for multimedia recommendation, which can produce
a lightweight yet effective student inference recommender with
minimal online inference time and resource consumption.

• We integrate prompt-tuning with multi-modal KD to bridge the
semantic gap between modality content and collaborative signals.
Additionally, by disentangling the modality-aware ranking logits,
the impact of noise in multimedia data is adjusted.

• We conduct experiments to evaluate our model performance
on real-world datasets. The results demonstrate our PromptMM

outperforms state-of-the-art baselines. The ablation studies and
further analysis show the effectiveness of sub-modules.

2 PRELIMINARIES
Interaction Graph with Multi-Modal Context. Motivated by
the effectiveness of graph-based recommenders, we represent user-
item relationships as a bipartite graph G = ({U,I}, E,X). Here,
U,I are users’ set and items’ set, respectively. The edges E in
G can be represented by adjacency matrix A ∈ R |U |× |I | with
A[𝑢,𝑖 ] = 1 if the implicit feedback exists, otherwise A[𝑢,𝑖 ] = 0. Fur-
thermore, each item 𝑖 ∈ I is associated with multi-modal features
X𝑖 = {x1

𝑖
, ..., x𝑚

𝑖
, ..., x |M |

𝑖
}, where |M| is the number of modalities,

indexed by𝑚 ∈ M. The feature x𝑚
𝑖

is a high-dimensional vector in
R𝑑𝑚 that captures the characteristics of modality𝑚. Notably, the
dimensions 𝑑𝑚 of multimodal features are often much larger than
those 𝑑 of recommender representations, i.e., 𝑑𝑚 ≫ 𝑑 .
Task Formulation.The goal of multi-modal recommender systems
is to learn a function that predicts the likelihood of a user adopting
an item, given an interaction graph G with multi-modal context
X. The output of the predictive function is the learned preference
score of a target user 𝑢 over a non-interacted item 𝑖 .

3 METHODOLOGY
PromptMM conducts model compression to build a lightweight yet
effective multi-modal recommender for resource-friendly online
collaborative filtering. The overall model flow is shown in Fig. 1.
Key components will be elaborated in following subsections.

3.1 Modality-aware Task-adaptive Modeling
3.1.1 Teacher-Student in CF. Knowledge distillation aims to
compress a complex large model into a lightweight and effective
small model. Inspired by this, our developed PromptMM is to trans-
fer modality-aware collaborative signals from cumbersome teacher
to lightweight student. For optimization, we employ offline distilla-
tion [11] which is a two-stage process, for flexibility concerns. In
the first stage, only the teacher is trained, and in the second stage,
the teacher remains fixed while only the student is trained.
Teacher T follows pattern of current graph-based multi-modal
encoders [54, 65], which encodes id-corresponding embeddings
ET
𝑢 ,ET

𝑖
and modality-specific features F𝑚𝑢 , F𝑚𝑖 through GNNs. The

two types of encoded representations will be further distilled to
student by our modality KD in Sec. 3.2.2, Sec. 3.2.3 and collaborative
KD in Sec. 3.2.1. Teacher T encoding process can be as follows:

{ET
𝑢 ,E

T
𝑖 }, {F1𝑢 , ..., F𝑚𝑢 , ..., F1𝑖 , ..., F

𝑚
𝑖 ...} = T (A,X) (1)

The two types of outputs respectively convey reliable collabo-
rative signals and modality-aware user preferences to student.
F𝑚𝑢 ∈ R |U |×𝑑 , F𝑚

𝑖
∈ R | I |×𝑑 are compressed (i.e., 𝑑𝑚 → 𝑑) from

high-dimensional X ∈ R | I |×𝑑𝑚 from extractors (e.g., BERT [21]).
Student S utilizes lightweight LightGCN [15] to capture user-item
collaborative relationship. The embedding process is conducted
without computationally intensive encoding of multi-modal fea-
tures. The encoding of student S can be summarized as:

ES
𝑢 , E

S
𝑖 = S(A) (2)

E𝑆𝑢 ,E𝑆𝑖 are the final user and item presentation used for online
recommendation inference and for receiving teacher knowledge.
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Figure 1: PromptMM is to learn a lightweight recommender with minimal online consumption, including three types of KD:
i) ranking KD; ii) denoised modality-aware ranking KD; iii) modality-aware embedding KD. Besides, prompt-tuning is for
adaptive task-relevant KD; disentangling and re-weighting are introduced to adjust the impact of noise in modalities.

3.1.2 Soft Prompt-Tuning as Semantic Bridge. Modality con-
tent X inevitably includes ranking task-irrelevant redundancies,
which not only confuse the target CF task but also exacerbate over-
fitting. Besides, the large semantic gap between general-purpose
modality modeling and u-i interaction modeling also hinders true
user preferences. Drawing inspiration from parameter efficient fine-
tuning (PEFT) [24, 25], we employ soft prompt-tuning[24] as the
solution. Specifically, we incorporate prompt p into teacher T (·)’s
multi-modal feature reduction layer R(·), to facilitate the extrac-
tion of collaborative signals from modalities. p is constructed by
multi-modal features X and finetuned with student S(·) to provide
the frozen teacher T (·) a student-task related signals as a hint. The
specific process can be divided into three steps: i) Construct the
prompt; ii) Incorporate in teacher T (·); iii) Conduct prompt-tuning.
Prompt Construction. To better incorporate semantics to prompt
module P(·), we initialize p using semantic content[40], instead
of vanilla initialization (e.g., Xavier [10], uniform). Refer to Prefix-
tuning[25], P(·) is a feedforward layer that takes soft prompt p as
input which aggregates information frommulti-modal item features
x𝑚 . The process of obtaining prompt vectors is as follows:

p = P(x𝑚 |𝜃P ) = P ©­« 1
|M|

|M |∑︁
𝑚∈M

𝜂 (x𝑚)ª®¬ (3)

𝜂 (·) denotes the dimensionality reduction function (e.g., PCA) for
multi-modal features. The learned prompt p will be incorporated
into the teacher’s inference process. The soft prompt module P(·)
will offer adaptive cues to the teacher once the student S(·) is
trained and the teacher T (·) is frozen.
Prompt-guided Teacher. Having obtained prompt p, we apply it
to the feature reduction layer R(·) in teacher T (·) for enhancing
the overfitting teacher, while simultaneously conducting student-
task adaptive knowledge distillation through the frozen teacher. To
be specific, we transform our prompt p into the modality-specific
module, i.e., p → p𝑚 , which allows the prompt to capture modality-
specific information. Next, our method leverages a simple yet effec-
tive add operator, inspired by [18], to integrate the modality-specific
prompt p𝑚 into the teacher’s multi-modal feature encoding layer.

Table 1: Summary of Key Notations.
Notations Explanations
G,V, E Interaction graph, Node set, Edge set
x𝑚 ∈ R𝑑𝑚 , f𝑚 ∈ R𝑑 High dimensional/ Densified feature of T
ET
𝑢 ∈ RU×𝑑 ,E𝑆𝑢 ∈ RU×𝑑 Final user embedding of teacher/student
T(·), S(·), P(·), R(·) Teacher, Student, Prompt Module, Reduction
b, q Binarized/Re-weighted knowledge
𝑏+/𝑏−, 𝑞𝑘 Binarized/Re-weighted single score

* We use uppercase bold letters (e.g., X) to denote matrices, lowercase bold letters (e.g., x) to
denote vectors, and light letters to denote scalar values.

Formally, this prompt integration process can be given as follows:
f𝑚 = R(x𝑚, p𝑚 |𝜃R ) = 𝜚 ((x𝑚 + 𝜆1 ∗ p𝑚)W𝑚

R + b𝑚R ) (4)
R(·) takes high-dimensional multi-modal features x𝑚 andmodality-
specific prompts p𝑚 as inputs, and output modality-specific embed-
dings f𝑚 ∈ R𝑑 . Themodality-specific prompt p𝑚 ∈ R𝑑𝑚 is obtained
by reshaping (i.e., 𝑑 → 𝑑𝑚) from p through p𝑚 = p · p𝑇 x𝑚 , and
adjusted by factor 𝜆1. To prevent overfitting caused by numerous
parameters high-dimensional features x𝑚 ’s reduction, dropout 𝜚 (·)
is applied here. The filter parameters W𝑚

R and b𝑚R are used to map
modality-specific features to their respective embedding space.

In this way, the feature reduction R will be strengthened due
to: i) bridging the gap between modality content and collaborative
signals, extracting modality-aware user preferences; ii) facilitating
knowledge distillation process by making modality-aware student-
constrained prompt p participate in teacher’s inference.
Soft Prompt-tuning Paradigm. In KD’s soft prompt tuning, we
consider the cumbersome teacher as the pre-trained model, and
the process is split into two stages. During teacher training, the
prompt module P(·) undergoes gradient descent with teacher T (·),
affecting the teacher’s inference process. During student training,
we employ offline knowledge distillation[11], freezing the teacher’s
parameters 𝜃T and updating the prompt module P(·) again accord-
ing to the student’s recommended loss, which allows the prompt p
to provide additional guidance to the feature reduction process and
distill task-relevant knowledge from teacher T (·).
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3.2 Modality & Ranking Knowledge Distillation
To comprehensively obtain the quality collaborative signal and
modality-aware user preference from teacher T (·), we have de-
signed three types of KD paradigms to convey knowledge from
different perspectives: i) Ranking KD; ii) Denoised Modality-aware
Ranking KD; and iii) Modality-aware Embedding KD.

3.2.1 Pure Ranking KD. As a ranking task, teacher T (·) ought
to convey task-relevant collaborative relations. To this end, we
propose to utilize prediction logits in ranking objectives such as
BPR[39] for KD optimization. Specifically, we distill valid ranking
knowledge from the ultimate representation ET

𝑢 ,TT
𝑖
constrained

by the classical pair-wise ranking BPR loss. Pair-wise score 𝑦Tpair
and 𝑦Spair are taken as logits of KD loss for teacher and student,
respectively. The classic KL loss logit represents multi-class scores,
while 𝑦pair represents a binary classification logit for determining
whether 𝑖+ is better than 𝑖− for user 𝑢. Our KD paradigm with the
pairwise ranking loss can be formally presented as follows:

LPairKD (ΘS ;ΘP ) = −
| Ebpr |∑︁

(𝑢,𝑖+,𝑖− )
𝑦Tpair (log𝑦

T
pair − log𝑦Spair) (5)

𝑦pair = log(sigmoid(e𝑢 · e𝑖+ − e𝑢 · e𝑖− ))
whereLPairKD represents the pair-wise ranking KDobjective.𝜃𝑆 ;𝜃𝑃
means that both student S(·) and prompt module P(·) parameters
are updated with the loss LPairKD (·). In each step, PromptMM sam-
ples a batch of triplets Ebpr = {(𝑢, 𝑖+, 𝑖−) |A[𝑢,𝑖+ ] = 1,A[𝑢,𝑖− ] = 0},
where 𝑢 denotes the target user. Here, 𝑖+ and 𝑖− denote the positive
item and negative item of BPR loss, respectively. In this way, teacher
model T (·) imparts collaborative expertise to student model S(·),
offering rich implicit knowledge in a different solution space [22]
to help the student escape from local optima [8, 12].

3.2.2 Denoised Modality-aware Ranking Disentangled KD.
Previously encoded multi-modal content f𝑚𝑢 , f𝑚𝑖 in teacher T (·)
contains noise and can affect the modality-aware user preferences
modeling. To conduct accuracy and fine-grained distillation while
reducing the impact of task-irrelevant parts, we design a denoised
modality-aware KD. Specifically, we calculate the list-wise score
using f𝑚𝑢 , f

𝑚
𝑖 to perform modality-aware ranking KD. In addition,

to further reduce the impact of noise, we reformulate KD loss into
a weighted sum of the disentangled parts.
Disentangling Modality-aware List-wise Score. For a 𝐾 sam-
ples ranking list, the predicted logits can be denoted as ylist = [
𝑦+1 ;𝑦

−
2 , 𝑦

−
3 , ..., 𝑦

−
𝑘
, ..., 𝑦−

𝐾
], where 𝑦+ and 𝑦− are the scores of the ob-

served edge A+ and unobserved edge A− , respectively. PromptMM
take each score in ylist as logit in KL divergence for distilling
informative tacit knowledge[11]. The modality-aware list-wise
logits then can be reformulated into two parts 𝐾𝐿(bT ∥bS) and
𝐾𝐿(qT ∥qS). bT deliver overall user preference to bS ; qT de-
liver fine-grained list-wise ranking prefer to qS . More specifically,
b = [𝑏+, 𝑏−] ∈ R1×2 represents the binary logits of observed set
{𝑦+1 } and unobserved set { 𝑦−2 , 𝑦

−
3 , ..., 𝑦

−
𝑘
, ..., 𝑦−

𝐾
}, that softened by

softmax:

b : 𝑏+ =
𝑒𝑥𝑝 (𝑦+1 )∑𝐾
𝑘=1 𝑒𝑥𝑝 (𝑦𝑘 )

; 𝑏− =

∑𝐾
𝑘=2 𝑒𝑥𝑝 (𝑦

−
𝑘
)∑𝐾

𝑘=1 𝑒𝑥𝑝 (𝑦𝑘 )
(6)

Disentangle Re-weight
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Figure 2: Calculation Example of Disentangled KD

Note that, 𝑦 is the sum of unobserved sets. Meanwhile, we declare
p = [𝑦2, 𝑦3, ..., 𝑦𝑘 , ..., 𝑦𝐾 ] ∈ R1×𝐾 to independently model logits
among unobserved set (i.e., without considering 𝑦+). Each element
is calculated by:

q : 𝑞𝑘 =
𝑒𝑥𝑝 (𝑦−

𝑘
)∑𝐾

𝑘=2 𝑒𝑥𝑝 (𝑦𝑘 )
(7)

Re-weightingModality-aware List-wise Score.Afterward, lower
scores are assigned to those uncertain user-item relationships to
down-weight their influence in the KDprocess. This allows PromptMM
to focus on the most reliable signals from the teacher model for
denoised knowledge transfer. The vanilla KL-Divergence can be
disentangled and re-weighted through the following derivation 1 :

𝐾𝐿(yTlist∥y
S
list) = 𝑏

+T log(𝑏
+T

𝑏+S
) +

𝐾∑︁
𝑘=2,𝑖≠1

𝑦−
𝑘
T log(

𝑦−
𝑘
T

𝑦−
𝑘
𝑆
) (8)

According to Eq. 6 and Eq. 7, we can derive 𝑞𝑘 = 𝑦𝑘/𝑏− . Thus, Eq. 8
can be rewritten as follows (detailed derivations in Appendix ):

= 𝑏+T log(𝑏
+T

𝑏+S
) + 𝑏−T

𝐾∑︁
𝑘=2,𝑖≠1

𝑞𝑘
T (log(𝑞𝑘

T

𝑞𝑘
S ) + log(𝑏

−T

𝑏−S )) (9)

=

𝑏+T log(𝑏
+T

𝑏+S
) + 𝑏−T log(𝑏

−T

𝑏−S )︸                                    ︷︷                                    ︸
𝐾𝐿(bT ∥bS)

+
(1 − 𝑏+T )

𝐾∑︁
𝑘=2,𝑖≠1

𝑞𝑘
T
𝑘
log(𝑞𝑘

T

𝑞𝑘
S )︸                     ︷︷                     ︸

𝐾𝐿(qT ∥qS)
Then, we can reformulate our disentangled knowledge distillation
paradigm with the awareness of multi-modalities as follows:

LListKD = −
|M |∑︁
𝑚∈M

𝐾𝐿(bT ∥bS) + (𝑏+T − 1)𝐾𝐿(qT ∥qS) (10)

List-wise ranking KD loss LListKD is reformulated as a weighted
sum of two terms for adjustablely transferring reliable knowledge
and enhancing the accuracy of modality-relevant user preference.

3.2.3 Modality-aware Embedding Distillation. In addition to
the logit-based KD, we propose to enhance our PromptMM frame-
workwith embedding-level distillation. To achieve embedding align-
ment in our PromptMM, we employ the Scale Cosine Error (SCE)
[17] loss function with auto-encoder [44] for robust training in-
stead of Mean Square Error (MSE). This is because MSE is sensitive
and unstable, which can lead to training collapse [17] because of
varied feature vector norms and the curse of dimensionality [7].
The utilization of the SCE-based loss LEmbKD for embedding-level

1We omit the temperature 𝜏 of softmax [16] without loss of generality
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Table 2: Model compression analysis. Time complexity comparison among SOTA GNN-enhanced multi-modal recommenders. i)
the R(·): time complexity ofmulti-modal feature reduction layer, bymapping high-dimensional features into dense embeddings,
i.e., 𝑑𝑚 → 𝑑 . ii) the 𝐺𝑁𝑁𝑠: time complexity of various GNN architectures in different models for message propagation.

Component MMGCN [59] GRCN [58] LATTICE [65] SLMRec [42] PromptMM
R(·) O ( ∑

𝑚∈M
| I | (𝑑𝑚 + 𝑑 )𝑑ℎ ) O ( ∑

𝑚∈M
| I |𝑑𝑚𝑑 ) O ( ∑

𝑚∈M
| I |𝑑𝑚𝑑 ) O ( ∑

𝑚∈M
| I |𝑑𝑚𝑑 ) 0

GNNs O( ∑
𝑚∈M

𝐿 | E |𝑑3 ) O ( ∑
𝑚∈M

( |I |2𝑑 + 𝐿 | E |𝑑 ) ) O ( ∑
𝑚∈M

| I |2𝑑𝑚 + 𝑘 | I |𝑙𝑜𝑔 ( |I | ) + 𝐿 | E |𝑑 ) 𝑂 ( ∑
𝑚∈M

𝐿 | E |𝑑 ) 𝑂 (𝐿 | E |𝑑 )

knowledge distillation can take the following forms:

LEmbKD =

|M |∑︁
𝑚∈M

1
|I |

∑︁
𝑖∈I

(1 −
e𝑆
𝑖
· f𝑚𝑖

∥e𝑆
𝑖
∥ × ∥f𝑚𝑖 ∥

)𝛾 , 𝛾 ≥ 1 (11)

LEmbKD is averaged over all user and item nodes in the interaction
graph G. The final representation outputted by the student model
S(·) is denoted as eS

𝑖
∈ ES

𝑖
, while the encoded multi-modal feature

from the teacher function T (·) are denoted as f𝑚𝑖 ∈ F𝑚
𝑖
. The scaling

factor 𝛾 is an adjustable hyper-parameter.

3.2.4 Model Joint Training of PromptMM. We train our rec-
ommender using a multi-task learning scheme to jointly optimize
PromptMM with the following tasks: i) the main user-item interac-
tion prediction task, represented by LBPR; ii) the pair-wise robust
ranking KD L𝑃𝑎𝑖𝑟𝐾𝐷 ; iii) the modality-aware list-wise disentan-
gled KDL𝐿𝑖𝑠𝑡𝐾𝐷 ; iv) modality-aware embedding KDL𝐸𝑚𝑏𝐾𝐷 . The
overall loss function L is given as follows:

L = LBPR + 𝜆2 · LPairKD + 𝜆3 · LListKD + 𝜆4 · LEmbKD (12)

LBPR =

| Ebpr |∑︁
𝑢,𝑖+,𝑖−

− log (sigmoid(e𝑢 · e𝑖+ − e𝑢 · e𝑖− )) + ∥Θ∥2 (13)

where 𝜆2, 𝜆3, and 𝜆4 are parameters for loss termweighting. The last
term ∥Θ∥2 is the weight-decay regularization against over-fitting.

3.3 Model Complexity Analysis
The time complexity of the current state-of-the-art graph-based
multi-modal recommender mainly consists of two parts: i) Modality
feature reduction layerR(·): Themultimodal recommendationmod-
els inevitably need to incorporate feature reduction layers, as shown
in Tab. 2. Most models employ a linear layer𝑂 (∑𝑚∈M ×|I| ×𝑑𝑚 ×
𝑑) or MLP transformation O(∑𝑚∈M ×|I|×(𝑑𝑚+𝑑)×𝑑ℎ). |I | is the
number of items. However, our inferencemodel avoids the densifica-
tion layer, due to the developed multi-modal knowledge distillation
recommendation framework. ii) GNNs operations: Our inference
model utilizes the LightGCN architecture solely in the graph con-
volutional component, resulting in the lowest consumption level
𝑂 (𝐿× |E|×𝑑) among current graph-based recommendation models,
where 𝐿 is the number of GNNs layers and |E | denotes the number
of observed interactions. Other models (e.g., LATTICE, SLMRec,
MICRO) also use lightweight architectures. However, GRCN and
LATTICE require reconstruction operations that consume |I |2 × 𝑑
and |I |2 × 𝑑𝑚 , respectively. The difference between them is that
the weights of the reconstructed edges are based on densification
𝑑 and the original high dimension 𝑑𝑚 , respectively. LATTICE also
takes 𝑂 (𝑘 × |I| × 𝑙𝑜𝑔( |I|)) to retrieve top-𝑘 most similar items
for each item. We summarize the computational complexity of the
graph-based multimodal methods in Tab. 2

Table 3: Statistics of experimented datasets withmulti-modal
item Visual (V), Acoustic (A), Textual (T) contents.

Dataset Netflix Tiktok Electronics
Modality V T V A T V T
Feat. Dim. 512 768 128 128 768 4096 1024

User 43,739 14,343 41,691
Item 17,239 8,690 21,479

Interaction 609,341 276,637 359,165
Sparsity 99.919% 99.778% 99.960%

* Tiktok: https://www.biendata.xyz/competition/icmechallenge2019/
* Electronics: http://jmcauley.ucsd.edu/data/amazon/links.html

4 EVALUATION
4.1 Experimental Settings
4.1.1 Dataset. We conduct experiments on three multi-model
recommendation datasets and summarize their statistics in Tab. 3.
• Netflix: This dataset contains user-item interactions from the
Netflix platform. To construct themulti-model content, we crawled
the movie posters based on the provided movie titles. The CLIP-
ViT model [35] was used as the image feature extractor and
BERT [21] is pre-trained for text feature encoding. We have
released our pre-processed Netflix dataset, which includes the
posters, to facilitate further research.

• Tiktok: This micro-video dataset [54] contains interactions with
three types of modality features: visual, acoustic, and textual.
The 128-dimensional visual and acoustic features were extracted
from micro-video desensitization, while the textual features were
extracted from the captions using the Sentence-BERT model [36].

• Electronics: This dataset is based on the Electronics review data
from Amazon. The visual modality includes 4,096-dimensional
features that were extracted using pre-trained convolutional neu-
ral networks [13]. For the textual modality, we utilized Sentence-
BERT [36] to combine various item attributes, such as title, de-
scriptions, categories, and brands, into a compact 1024-d vector.

4.1.2 Evaluation Protocols. We use two widely adopted met-
rics for top-K item recommendation task: Recall@K (R@K) and
Normalized Discounted Cumulative Gain (N@K). We set K to 20
and 50 to evaluate the performance of our approach and several
state-of-the-art baselines. We adopted the all-ranking strategy for
evaluation, following the settings used in previous works [56, 58].
To conduct significance analysis, 𝑝-values were calculated using the
results of our proposed approach and the best-performing baseline.

4.1.3 Hyperparameter Settings. We implemented our model
framework using PyTorch and initialized model parameters using
the Xavier initializer. We employ the AdamW optimizer [33] for
both teacher T (·) and student S(·). The optimizer of the student
will simultaneously optimize the parameters of both the student
S(·) and the prompt module P(·), which is similar to that of the
teacher’s optimization. We search for the learning rates of T (·)
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and S(·) within the ranges of [3.5𝑒−4, 9.8𝑒−3] and [2.5𝑒−4, 8.5𝑒−4]
respectively. The decay of the 𝐿2 regularization term is tuned from
{2.5𝑒−3, 7.4𝑒−3, 2.1𝑒−2} for three datasets. All baselines are evaluated
based on their source code and original papers, and the correspond-
ing parameter tuning is conducted under a unified process.

4.1.4 Baselines. To comprehensively evaluate the performance
of our proposed approach, we compared it against several state-of-
the-art baselines from different research lines.
i) Collaborative Filtering Models
• BPR-MF [39]: It presents a generic optimization criterion, BPR-
Opt, for personalized ranking that outperforms standard learning
techniques for matrix factorization and adaptive kNN.

• NGCF [51]: It introduces GNNs to the CF framework to model
high-order information. The newly proposed embedding propa-
gation layer allows the embeddings of users and items to interact
with long-range information to harvest the collaborative signal.

• LightGCN [15]: It simplifies the graph convolution to remove the
transformation and activation modules for model simplification.

ii) Multi-Modal Recommender Systems

• VBPR [14]: It proposes a Matrix Factorization approach to in-
corporate visual signals into a prediction of user’s preference for
personalized ranking with implicit feedback.

• MMGCN [59]: It is built upon the graph-based information prop-
agation framework with a multi-modal GNN, so as to guide rep-
resentation learning of user preference in each modality.

• GRCN [58]: It designs adaptive refinement module to identify
and prune potential false positive edges in the interaction struc-
ture, by considering multi-modal item characteristics.

• LATTICE [65]: This method discovers latent relationships be-
tween modalities using modality-aware structure learning layers
to supplement collaborative signals for recommendation.

• CLCRec [57]: It studies the cold-start recommendation task and
maximizes the mutual dependencies between item content and
collaborative signals using contrastive learning.

• SLMRec [42]: This work captures multi-modal patterns in data
by generating multiple views of individual items and using con-
trastive learning to distill additional supervised signals.

4.2 Performance Comparison
Tab. 4 presents the results of all methods on three datasets, with
the results of PromptMM and the best baseline highlighted in bold
and underlined, respectively. Based on the results and our analysis,
we make the following key observations and conclusions:
• The proposed PromptMM consistently outperforms both general
collaborative filtering (CF) models and state-of-the-art multi-
modal recommendation methods on all three datasets, demon-
strating its effectiveness in multimedia recommendation. The
improved outcomes are attributed to our designed multi-modal
knowledge distillation enhanced by prompt-tuning, which not
only bridges the semantic gap during the multi-modal knowledge
transfer but also eliminates the impact of noise and redundancy
of modality data. Furthermore, our results support the idea that
multi-modal recommender systems perform better than general
CF models, due to the incorporation of multi-modal context for
assisting user preference learning under sparse data.

(a) raw feature (b) w-prompt (c) w/o-prompt

Figure 3: t-SNE Visualization on Tiktok for raw high dimen-
sional multi-modal features X𝑚 , modality-specific represen-
tations F𝑚 of PromptMM and F𝑚 of variant w/o-Prompt.

• Our PromptMM achieves competitive results with a lightweight
architecture and tailored transferred knowledge, suggesting that
there may be noise in the multi-modal data. This finding confirms
our motivation that directly incorporating multi-modal informa-
tion into the user representations may introduce noise, which can
misguide the encoding of modality-aware user preferences. To
address this issue, our proposed approach disentangles the soft
labels of collaborative relations during the knowledge distillation,
which effectively alleviates the noise of multi-modal content by
transferring more informative signals into the student model.

• Multi-modal recommendation methods often exhibit significant
performance fluctuations on different datasets, due to overfit-
ting. These models are highly influenced by the quality of model
features as well as the number of interactions. For instance, LAT-
TICE performs worse on Netflix with many interactions, which
we attribute to the introduction of noise by the homogeneous co-
current graph. In contrast, GRCN achieves superior performance
on Netflix by identifying and removing false-positive edges in
user-item graphs. CLCRec do not use classical negative sam-
pling of BPR and perform better on datasets with more implicit
feedback than on Tiktok and Electronics. We speculate that this
is because negative samples do not necessarily indicate users’
dislikes. It may simply be due to the item not being presented.

4.3 Ablation and Effectiveness Analyses
To justify the effectiveness of the proposed key components, we
designed four variants of our PromptMM and compared their per-
formance against the original approach. The results in terms of
Recall@20 and NDCG@20 are shown in Table 5. Further conver-
gence analysis is provided in Supplementary. In order to gain deeper
insights into the efficacy of the key components, we also conducted
a further visualization analysis. Variant details are presented below:

• w/o-Prompt: This variant disables the prompt-tuning module
to evaluate its impact on bridging the semantic gap during the
teacher-student knowledge distillation process.

• w/o-PairKD: This variant examines the effect of ranking-based
distillation for collaborative knowledge by removing the pair-
wise knowledge distillation loss term LPairKD from the joint loss.

• w/o-ListKD: The modality-aware disentangled knowledge distil-
lation is not included to re-weight the soft-labels for alignment
with the fine-grained knowledge decoupling.

• w/o-disentangle: This variant preserves the list-wise distillation
in Sec. 3.2.2, while removing the disentangled part. Aiming to
validate the utility of extracting more informative signals from
modality features f𝑚 with the list-wise objective, as well as the
necessity of decoupling the transferred knowledge.
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Table 4: Performance comparison of baselines on different datasets in terms of Recall@20/50, and NDCG@20/50.

Baseline Netflix Tiktok Electronics
R@20 N@20 R@50 N@50 R@20 N@20 R@50 N@50 R@20 N@20 R@50 N@50

MF-BPR 0.1583 0.0578 0.2396 0.0740 0.0488 0.0177 0.1038 0.0285 0.0211 0.0081 0.0399 0.0117
NGCF 0.1617 0.0612 0.2455 0.0767 0.0604 0.0206 0.1099 0.0296 0.0241 0.0095 0.0417 0.0128

LightGCN 0.1605 0.0609 0.2449 0.0768 0.0612 0.0211 0.1119 0.0301 0.0259 0.0101 0.0428 0.0132
VBPR 0.1661 0.0621 0.2402 0.0729 0.0525 0.0186 0.1061 0.0289 0.0234 0.0095 0.0409 0.0125

MMGCN 0.1685 0.0620 0.2486 0.0772 0.0629 0.0208 0.1221 0.0305 0.0273 0.0114 0.0445 0.0138
GRCN 0.1762 0.0661 0.2669 0.0868 0.0642 0.0211 0.1285 0.0311 0.0281 0.0117 0.0518 0.0158
CLCRec 0.1801 0.0719 0.2789 0.0892 0.0657 0.0214 0.1329 0.0329 0.0300 0.0118 0.0559 0.0169
SLMRec 0.1743 0.0682 0.2878 0.0869 0.0669 0.0221 0.1363 0.0342 0.0331 0.0132 0.0624 0.0180
LATTICE 0.1654 0.0623 0.2531 0.0770 0.0675 0.0232 0.1401 0.0362 0.0340 0.0135 0.0641 0.0184
PromptMM 0.1864 0.0743 0.3054 0.1013 0.0737 0.0258 0.1517 0.0410 0.0369 0.0155 0.0691 0.0218
𝑝-value 1.60𝑒−6 5.90𝑒−5 2.99𝑒−7 1.11𝑒−6 1.41𝑒−4 5.59𝑒−4 5.00𝑒−6 1.29𝑒−5 3.24𝑒−5 2.96𝑒−6 7.51𝑒−7 4.63𝑒−6

Table 5: Ablation study on key components of PromptMM
Data Netflix Tiktok Electronics

Metrics R@20 N@20 R@20 N@20 R@20 N@20
w/o-Prompt 0.1665 0.0662 0.0681 0.0240 0.0280 0.0117
w/o-PairKD 0.1774 0.0689 0.0692 0.0242 0.0277 0.0112
w/o-ListKD 0.1690 0.0487 0.0673 0.0234 0.0331 0.0136

w/o-disentangle 0.1712 0.0693 0.0706 0.0249 0.0353 0.0141
PromptMM 0.1864 0.0743 0.0737 0.0258 0.0369 0.0155

4.3.1 Numerical Results. As can be seen in the Tab. 5: (1) For
variant w/o-Prompt, its performance on all three datasets has de-
creased compared to PromptMM. This suggests that the removal
of prompt-tuning may lead to the semantic gap for knowledge
distillation. The modality-aware projection may also be overfit-
ting and can be limited to encode recommendation task-relevant
multi-modal context without prompt-tuning enhancement. (2) The
variant w/o-PairKD shows a decrease in performance compared
to PromptMM when pair-wise KD is disabled, demonstrating the
strength ofLPKD in distilling ranking-based signals for model align-
ment. (3) Modality-aware list-wise distillation can finely extract
quality modality-aware collaborative relationships, which helps in
multi-modal recommendation. Therefore, the variant w/o-ListKD
is inferior to the PromptMM results. (4) The item-centric modal-
ity features are heavily biased against the preferences of the user.
As a result, the variant w/o-disentangle performs poorly without
disentangling and re-weighing distilled soft labels.
4.3.2 Visualization Analysis. As shown in Fig. 3, We conducted
a visual analysis of modality-specific features on the TikTok dataset
to intuitively understand the influence of introducing prompt-
tuning for bridging the teacher model and the student model. Specif-
ically, we applied t-SNE with PCA initialization to reduce the
dimensionality of both the modality-specific densified features
f𝑚𝑖 ∈ R | I |×𝑑 (𝑤−,𝑤/𝑜− prompt-tuning) obtained from the feature
densification layer, and the original multi-modal high-dimensional
features x𝑚 ∈ R | I |×𝑑𝑚 into a 2-dimensional space. The results
show that the original features x𝑚 of diverse modalities exhibit
significant differences in their vector space representation, with
clear distinctions among different modalities, highlighting their as-
sociation with distinct distributions. For modality-specific features
f𝑚𝑖 , there are more overlaps in the prompt-tuning version, while the
non-prompt-tuning version𝑤/𝑜−Prompt remains more confined

Table 6: Model compactness and inference efficiency. "Time"
indicates the average recommendation time for each epoch.
"Memory" represents GPU memory usage. "Params" denotes
the number of parameters. "Ratio" indicates the relative pa-
rameter size compared to the teacher. We use PyTorch with
CUDA from RTX 3090 GPU and Intel Xeon W-2133 CPU.

Dataset T-Model Time Memory # Params Ratio

Netflix

Teacher 42.6s 2.95GB 24.91M -
LATTICE 61.0s 18.24GB 24.06M 96.59%
PromptMM 23.3s 2.03GB 1.95M 7.83%

Electronics

Teacher 30.8s 5.02GB 99.04M -
LATTICE 45.1s 37.69GB 98.39M 99.34%
PromptMM 13.9s 3.81GB 2.67M 2.70%

* LATTICE out of memory on Electronics dataset, and we completed its experiment on A100.

to a modality-specific space. This suggests that prompt-tuning ef-
fectively strengthens the encoding of modality-specific features by
extracting common user preferences pertaining to multiple ranking
tasks while reducing the task-irrelevant features characteristic.

4.4 Study on Resource Consumption
In this section, we investigate the resource utilization of the teacher,
student, and several baselines (LATTICE) in terms of training time,
storage, parameter count, and student-to-teacher parameter ratio
for model compression. The specific numerical results on Netflix
and Electronics are reported in Tab. 6. Results show that Our student
model exhibits significantly lower inference and recommendation
time consumption than other models, likely due to their larger
size, which requires more time during gradient descent parameter
updates. Additionally, LATTICE has to dynamically learn homoge-
neous graphs, which increases computational time consumption.
We find that the calculation of KL-Divergence in our model does not
significantly increase time consumption, resulting in lower latency.

Moreover, the results show that our model has low storage con-
sumption, with a much lower parameter quantity compared to other
models, such as LATTICE which needs to dynamically calculate
and store item-time relationships, incurring significant overhead.
The numerical value of ’ratio=11.24% or 2.70%’ indicates the effec-
tiveness of our model as a compression algorithm. Supplementary
provides model evaluation results with online incremental learning.
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(a) # of GNN layers (b)  latent dimensionality � (c) dropout rate 

(d)              rate (f) prompt rate(e)              rate

Figure 4: Impact study of hyperparameters in PromptMM.

4.5 Impact Study of Hyperparameters
This section investigates the influence of several important hyper-
parameters in our proposed PromptMM. We report the evaluation
results in Fig. 4 and examine the effect of one hyperparameter at a
time while keeping other parameters at their default settings.

• Representation Dimensionality 𝑑 : We investigated the influence
of representation dimensionality 𝑑 on both the student S(·) and
teacher T (·), with respect to the impact on recommendation
system outcomes. We selected values of 𝑑 from [16, 32, 64, 128],
and found that the model’s performance saturates when the
number of hidden units reaches approximately 64 for the student.
Notably, when the dimensions of the teacher and student are the
same, the student’s results are better. This is because the score of
KD is obtained by the inner product of the representations, and
the dimension size determines the scale of the score. Having the
same scale level leads to a more accurate KD.

• Depth of GNNs 𝐿: We examine the influence of the depth of
the GNNs in the range of [1, 2, 3, 4]. The results show that the
teacher’s performance improves as the layer count increases,
while the student’s performance remains moderate. We speculate
that this is because the teacher needs to encode useful knowledge
with high-order relationships, and our modality-aware ranking-
based KD effectively transfers quality knowledge to the student.

• Dropout Ratio of Teacher’s Modality Encoding Layer: We inves-
tigate the influence of the dropout ratio of the teacher’s modality
encoding layer, which ranges from 0 to 1. Our results show that
without dropout, the teacher’s performance drops sharply, indi-
cating overfitting in the multi-modal feature encoder. A higher
dropout rate is required for datasets with higher original feature
dimensions, confirming the risk of overfitting the multi-modal
feature with existing modality encoders.

• Pair/List-wise KD Loss Weight 𝜆2, 𝜆3: The pair/list-wise KD loss
weights (𝜆2, 𝜆3) indicate the strength of collaborative knowledge
distillation and disentangled modality-aware knowledge distilla-
tion, respectively. We vary the weights in the range of [0, 1𝑒-2,
1𝑒-1, 1𝑒0, 1𝑒1, 1𝑒2]. Evaluation results show that absent or small
weights significantly decrease the model’s performance.

• Prompt Rate 𝜆1: It controls the soft-token rate. Our results show
that without a soft-token rate, the model’s performance signifi-
cantly decreases, indicating that prompt-tuning enables teachers
to generate more helpful knowledge for students. We speculate
that this is because the prompt module optimizes alongside the

student learning, leading to better recommendation performance.

5 RELATEDWORK
Multi-ModalRecommender Systems. Researchers have explored
using multi-modal content [29] to enhance recommenders. To im-
prove vanilla CF, multi-modal attention mechanisms (e.g., ACF [3])
have been introduced to model multi-level item relationships. Af-
ter that, GNN-enhanced multi-modal recommenders capture high-
order connectivity by incorporating modality signals. Inspired by
the success of self-supervised learning [26, 38, 54], recent multime-
dia recommenders, such as MMGCL [64], SLMRec [42], use data
augmentation strategies to enhance the representation learning.
Recent methods are trying to improve multi-modal method using
LLMs (e.g., TALLRec [1], LLMRec [55]). Despite their effectiveness,
most of them are built upon cumbersome multi-modal feature en-
coding which limits their scalability in practice.
Knowledge Distillation for Recommendation. KD in recom-
mendation has sparked various research directions [20, 46, 48, 61].
HetComp[20] transfers the ensemble knowledge of heterogeneous
teachers to a lightweight student. NOSMOG [43] distills knowledge
from GNNs to MLPs. TinyLLM [45] distills knowledge from multi-
ple large language models (LLMs). GNP [47] transfers knowledge
from KG [27, 28] to LLMs.We introduce KD inmulti-modal scenario
for two purposes: i) Solve the problem of large coding parameter
models caused by high-dimensional output features in multi-modal
scenes; ii) reduce the impact of noise in modal content and empha-
size the knowledge that is relevant for downstream tasks.
In-context Learning and Prompt-tuning. Prompt learning has
become a emerging research direction in the context of large pre-
trained models [2, 31]. For in-context learning, for example, RLM-
Rec [37] enhance the representation of recommenders using LLMs;
some work [41] utilizes contextual learning for structured relation-
ship modeling. GraphPrompt [32] defines the paradigm of prompts
on graphs. To transfer knowledge graph semantics into task data,
KGTransformer [67] regards task data as a triple prompt for tuning.
Additionally, prompt-based learning has also been introduced to
to enhance model fairness [60], sequence learning [62]. Motivated
by these research lines, we propose a novel multi-modal prompt
learning approach that can adaptively guide knowledge distillation
for simple yet effective multimedia recommendation.

6 CONCLUSION
The objective of this work is to simplify and enhance multi-modal
recommenders using a novel modality-aware KD framework em-
powered by prompt-tuning. To effectively transfer task-relevant
knowledge from the teacher to the student model, we introduce
a learnable prompt module that dynamically bridges the seman-
tic gap between the multi-modal context encoding in the teacher
model and the collaborative relation modeling in the student model.
Additionally, our proposed framework, called PromptMM, aims
to disentangle the informative collaborative relationships, thereby
enabling augmented knowledge distillation. Through extensive ex-
periments, we demonstrate that PromptMM significantly improves
model efficiency while maintaining superior accuracy compared to
state-of-the-art solutions. Our future work plans to integrate LLMs
with multi-modal context encoding for performance enhancement.
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7 SUPPLEMENTARY MATERIAL
In our supplementary materials, we begin by outlining the key steps
involved in learning our proposed model. We then provide detailed
derivations of the decoupling collaborative relationships to sup-
plement our model’s ability to distill more informative signals and
reduce noise in the multi-modal knowledge distillation paradigm.
Furthermore, we present additional experiments on real-time in-
cremental learning scenarios to further demonstrate the validity of
our proposed PromptMM framework in practical scenarios. Finally,
we provide a list of the source code used for the baseline methods.

7.1 Derivations of Disentangling Ranking Score
In our PromptMM, we propose to improve our collaborative knowl-
edge distillation approach by incorporating modality-aware user
interaction patterns and decoupling the transferred knowledge
based on its degree of uncertainty. By considering the reliability
of observed user-item relations, including interactions and non-
interactions, we can better identify the most informative collabora-
tive signals from the teacher model. To achieve this, we will utilize
a modality-aware decoupled KD with a listwise loss, which will
allow us to more flexibly handle collaborative signals related to
different modalities.

The details presented below are related to the mathematical
derivation discussed in Section 3.2.2:
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Figure 5: Training curves of PromptMM framework in terms of Recall@20, NDCG@20, and L on Tiktok dataset.

By discriminating the knowledge transferred from the teacher
model in terms of its uncertainty, our model can effectively man-
age the collaborative signals associated with different modalities,
thereby reducing the noise and improving the accuracy of the trans-
ferred knowledge in our multi-modal knowledge distillation.

7.2 Supplementary Experiments
7.2.1 Incremental Learning over New Data. To validate the
efficiency and effectiveness of our lightweight inference model (i.e.,
student) for making recommendations in real-life online platforms,
we simulate a scenario where the model is fine-tuned with a small
number of new interactions and used for predicting dynamic user
preferences in movies from Netflix data.

Table 7: Performance of model adaptation to new data. The
time cost (measured by ms) is calculated by training the
model and making inferences with recommendation results.
Better results can be obtained by our model compared with
baselines in terms of both efficiency and accuracy.

Methods Recall@20 NDCG@20 Time
LATTICE 0.1210 0.0487 1,605.26ms
PromptMM 0.1454 0.0586 482.5ms

Table 7 demonstrates that the lightweight inference model out-
performs the baseline methods (LATTICE) with cumbersome multi-
modal encoding frameworks in terms of efficiency. Our designed
multi-modal knowledge distillation paradigm allows our model to
achieve comparable recommendation accuracy to more complex
multi-modal recommender systems, while significantly improving
performance compared to LATTICE. This is because our model ef-
fectively transfers multi-modal collaborative relationships from the
teacher model, thereby preserving modality-aware user preferences
in the smaller student model.

The experiments performed under an incremental learning rec-
ommendation environment indicate that a lightweight inference
model can better adapt to new recommendation data with much
lower computational cost while performing comparably to more
cumbersome baselines in terms of Recall@20 and NDCG@20. This
further confirms the performance superiority of our PromptMM in
practical recommender systems, providing an efficient and effective
inference model for real-time recommendation.

7.2.2 Convergence Analysis. In this section, we use conver-
gence analysis to examine the effects of our multi-modal knowledge
distillation recommendation system on the effectiveness of model

training. The convergence process with respect to Recall@20 and
L for each epoch is shown in Fig. 5.
7.2.3 Parameter Size Comparison. By analyzing the parameter
statistics of both the teacher and student models, we can observe
that our PromptMMeffectively compresses the student model, re-
sulting in a significantly smaller parameter size.

Table 8: # Parameters of Teacher and Student Models.

# Parameters: Teacher (Electronics)
Weight Name Weight Shape Number
image_trans.weight torch.Size([4096, 32]) 131072
image_trans.bias torch.Size([32]) 32
text_trans.weight torch.Size([768, 32]) 24576
text_trans.bias torch.Size([32]) 32
user_id_embedding.weight torch.Size([43739, 32]) 1399648
item_id_embedding.weight torch.Size([17239, 32]) 551648
image_embedding.weight torch.Size([17239, 32]) 551648
text_embedding.weight torch.Size([17239, 32]) 551648
batch_norm.weight torch.Size([32]) 32
batch_norm.bias torch.Size([32]) 32
The total number of parameters: 3210368
The parameters of Model Teacher_Model: 3.210368M

# Parameters: Student: LightGCN (Electronics)
Weight Name Weight Shape Number
user_id_embedding.weight torch.Size([43739, 32]) 1399648
item_id_embedding.weight torch.Size([17239, 32]) 551648
The total number of parameters: 1951296
The parameters of Model Student_LightGCN: 1.951296M
* Correct the value in Tab.6.

Table 9: # Parameters of Teacher and Student Models.

# Parameters: Teacher (Electronics)
Weight Name Weight Shape Number
image_trans.weight torch.Size([4096, 64]) 262144
image_trans.bias torch.Size([64]) 64
text_trans.weight torch.Size([768, 64]) 49152
text_trans.bias torch.Size([64]) 64
image_feat.weight torch.Size([21479, 4096]) 87977984
text_feat.weight torch.Size([21479, 768]) 16495872
user_id_embedding.weight torch.Size([41691, 64]) 2668224
item_id_embedding.weight torch.Size([21479, 64]) 1374656
batch_norm.weight torch.Size([64]) 64
batch_norm.bias torch.Size([64]) 64
The total number of parameters: 108828288
The parameters of Model Teacher_Model: 108.8M
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# Parameters: Student: LightGCN (Electronics)
Weight Name Weight Shape Number
user_id_embedding.weight torch.Size([41691, 64]) 2668224
item_id_embedding.weight torch.Size([21479, 64]) 1374656
The total number of parameters: 4042880
The parameters of Model Student_LightGCN: 4.0M
* Correct the value in Tab.6.

# Parameters: Student: GCN (Electronics)
Weight Name Weight Shape Number
layer_list.0.user_weight torch.Size([32, 32]) 1024
layer_list.0.item_weight torch.Size([32, 32]) 1024
The total number of parameters: 2048
The parameters of Model Student_GCN: 0.002048M

7.2.4 Baseline Model Implementations. The publicly available
source codes for the baselines can be found at the following URLs:
• BPR-MF: https://github.com/gamboviol/bpr.git
• NGCF: https://github.com/huangtinglin/NGCF-PyTorch.git
• LightGCN: https://github.com/kuandeng/LightGCN.git
• VBPR: https://github.com/DevilEEE/VBPR.git
• MMGCN: https://github.com/weiyinwei/MMGCN.git
• GRCN: https://github.com/weiyinwei/GRCN.git
• LATTICE: https://github.com/CRIPAC-DIG/LATTICE.git
• CLCRec: https://github.com/weiyinwei/CLCRec.git
• SLMRec: https://github.com/zltao/SLMRec.git
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